Solve the following exponential or logarithmic equations without using a calculator for 1-5.

1. a) \(2^{2x^2-7x} = 16\)
 b) \(5^x = 26\)

2. \(\log(4) + \log(2x - 1) = \log(x + 3)\)

3. \(\log_2 x = 5\)

4. \(4^{2x} - (5)4^x = -4\)

5. \(\log_2(x + 1) + \log_2 x = 1\)
6. Find the domain and range of \(f(x) = \log (x - 7) \)

7. The formula for the accumulated amount, \(A \), of an investment (or loan) is given by the formula, \(A = P(1 + \frac{r}{n})^{nt} \), where \(P \) is the principal, \(r \) is the annual interest rate, \(n \) is the number of times the interest is compounded each year, and \(t \) is the number of years. Find the accumulated amount on an investment of $9,000 at 2.9% annual interest, compounded monthly over 8 years. Round your answer down to the nearest cent.

8. Write the following logarithmic expression as the sum/or difference of logs:
\[
\log \frac{7y^4x}{4(x+2)^2}
\]

9. Write the following logarithmic expression as a single log:
\[
3 \log_5(4x + 7) + 4\log_5(2x) - 5\log_5 y
\]

10. The number \(A \) of bacteria found in a culture is a function of time, \(t \), in minutes and is given by the formula \(A = A_0 e^{0.9t} \) with the initial value \(A_0 = 1500 \). After how many minutes will there be four times the initial amount of bacteria? Round to 2 decimal places.
11. Switch the following into logarithm form: \(4^x = 16\). Explain how the two types of functions are related as inverses by sketching the graphs and stating domain and range of each form.

12. Evaluate \(\log_7 10\) to three decimal places.

13. a) Find the inverse of \(f(x) = \sqrt{x + 9}\)

b) State the domain and range of \(f(x)\) and \(f^{-1}(x)\).

c) Prove they are inverses using \(f(g(x)) = g(f(x)) = x\)

14. If \(f(x) = 3x^2 - 6x + 4\) and \(g(x) = 2x\), find \((f \circ g)(x)\).